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The three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using
comparative molecular field analysis (CoMFA) was applied to an extensive series of 305 varied
diarylheterocyclic derivatives known as COX-2 selective inhibitors. X-ray crystal structure of
COX-2 bound with SC-558, a selective COX-2 inhibitor, was used to derive the putative bioactive
conformation of these inhibitors. Five statistically significant models were obtained from the
randomly constituted training sets (229 compounds) and subsequently validated with the
corresponding test sets (76 compounds). The best predictive model (n ) 229, q2 ) 0.714, N )
8, r2 ) 0.905, s ) 0.291, F ) 261.545) was selected for further comparison of the CoMFA contour
maps obtained for steric, electrostatic, and lipophilic fields with the enzyme structure. The
high level of compatibility with the COX-2 enzyme topology shows the great accuracy of this
model that can predict inhibitory activities for a wide range of compounds and offers important
structural insight into designing novel antiinflammatory drugs prior to their synthesis.

Introduction
The classical nonsteroidal antiinflammatory drugs

(NSAIDs) such as aspirin, ibuprofen, or indomethacin
are therapeutic agents widely used in the treatment of
inflammation, pain, and fever.1 Their principal phar-
macological effect is their ability to inhibit prostaglandin
synthesis. They act via inhibition of the enzyme pros-
taglandin H2 synthase, also referred to as cyclooxyge-
nase (COX), which catalyses the conversion of arachi-
donic acid to prostaglandin H2 (PGH2). In 1990, Fu et
al. discovered the existence of two isoforms of this
enzyme: COX-1 and COX-2.2 COX-1 is constitutively
expressed in most tissues and, particularly, in the
gastrointestinal tract and kidneys where it is mainly
responsible for the synthesis of cytoprotective prostag-
landins. COX-2 is selectively induced by proinflamma-
tory cytokines (IL-1) and growth factors (TNFR) and
facilitates the release of prostaglandins involved in the
inflammatory process. This discovery led to the hypoth-
esis that side effects such as ulcers and renal failure
associated with the clinically useful NSAIDs are caused
by the inhibition of COX-1, whereas the antiinflamma-
tory properties result from the inhibition of the inducible
COX-2. Selective inhibition of COX-2 provided a new
class of antiinflammatory, analgesic, and antipyretic
drugs with significantly reduced side effects. Recent
works suggest that inhibiting COX-2 could also be an
important strategy for preventing or treating a number
of cancers3 and could be used to delay or slow the clinical
expression of Alzheimer’s disease.4

The discovery of two lead compounds arising from
distinct chemical classes, NS-3985 and DuP-6976 (Figure
1), has led to two general classes of selective COX-2

inhibitors, the diarylheterocycles and the methanesulfo-
nanilides. When tested on animal models at high doses,
they have shown antiinflammatory, analgesic, and
antipyretic activities without causing gastrointestinal
lesions. Recently, the structures of some nonselective
NSAIDs such as indomethacin, zomepirac, aspirin, and
flurbiprofen have been successfully converted into selec-
tive COX-2 inhibitors.7

In this paper, we report a 3D-QSAR study which
applied comparative molecular field analysis (CoMFA)8

methodology, including the steric, electrostatic, and
lipophilic fields,9,10 to derive predictive models from a
wide series of 305 varied diarylheterocyclic derivatives
selected from other papers as COX-2 selective inhibitors.
The determination of the active conformation which
constitutes the critical step in 3D-QSAR CoMFA stud-
ies, was facilitated by the availability of the X-ray
crystal structure of murine COX-2 bound with SC-558
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Figure 1. Molecular structures of NS-398, DuP-697, and SC-
558.
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(Figure 1), a selective COX-2 inhibitor.11 Our recent
success in deriving a 3D-QSAR predictive model on a
set of selective COX-2 inhibitors12 prompted us to extend
the study to a larger and more diverse set of inhibitors
of the diarylheterocycle class. This should facilitate the
design and development of new selective COX-2 inhibi-
tors.

Materials and Methods

Selection of Ligands. A compilation was made of the
inhibitory activity values of 305 compounds against the COX-2
inducible isoform. All the values retained had been obtained
using the same biological method on the human recombinant
enzyme13 and are expressed in terms of pIC50 or log(1/IC50)
where IC50 represents the drug concentration that inhibits 50%
of activity. The inhibitory activities of reference compounds
were checked to ensure that no difference occurred between
the different series. The compounds retained belong to nine
structurally different families depending on the central cyclic
tensor (Figure 2). These tensors were pyrrole14 (family A: 20
compounds in Table 1, Supporting Information), imidazole15,16

(family B: 114 compounds in Table 2, Supporting Information),
cyclopentene17,18 (family C: 34 compounds in Table 3, Support-
ing Information), benzene19 (family D: 40 compounds in Table
4, Supporting Information), pyrazole20 (family E: 64 compounds
in Table 5, Supporting Information), spiroheptene21 (family F:
28 compounds in Table 6, Supporting Information), spirohep-
tadiene21 (family G: 2 compounds in Table 7, Supporting
Information), isoxazole22 (family H: 2 compounds in Table 8,
Supporting Information), and thiophene (family I: 1 compound
in Table 9, Supporting Information). Their enzyme inhibitory
activities are widespread and homogeneous (Figure 3). Thirty-
eight compounds display pIC50 values between 5 and 6 (very
low activity), 107 display pIC50 values between 6 and 7 (low
activity), 104 exhibit pIC50 values between 7 and 8 (moderate
activity), and 56 show pIC50 values higher than 8 (good
activity). This is a prerequisite if meaningful results are to be

obtained from a three-dimensional quantitative structure-
activity relationship study (3D-QSAR) using the comparative
molecular field analysis (CoMFA) method. Approximately 75%
of the 305 compounds were divided into five individual training
sets of 229 compounds each, and the remaining 25% were used
as test sets with 76 compounds each. The compounds were
split between training and test sets at random. Random
numbers were generated and assigned to each compound
before they were sorted in increasing order. The test set
elaboration follows suggestions by Oprea et al.:23 (1) the
biological assay methods for both training and test set should
be compatible; (2) for the test set, the biological activity values
should span several orders of magnitude but should not exceed
activity values in the training set by more than 10%; (3) the
test set should represent a balanced number of both active
and inactive compounds for uniform sampling of the data. This
multimodel approach was used to assess the predictive power
of the final model.

Molecular Modeling. Molecular modeling studies were
performed using SYBYL software version 6.624 running on
Silicon Graphics workstations. The X-ray crystal structure of
SC-558 (Figure 1), a selective COX-2 inhibitor bound to the
enzyme active site and available in the RCSB Protein Data

Figure 2. Definition of the nine families of inhibitors studied.

Figure 3. Distribution of inhibitory activities (pIC50) of all
compounds investigated.
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Bank (1CX2),11 was used as template to construct the three-
dimensional models of all the compounds by replacing phenyl
substituents or modifying the heterocycle. The geometry of
these putative bioactive conformations was subsequently
optimized using the Tripos force field25 including the electro-
static term calculated from Gasteiger and Hückel atomic
charges. The method of Powell available in Maximin2 proce-
dure was used for energy minimization until the gradient value
was smaller than 0.001 kcal/mol Å. To determine the best
orientation of the phenyl substituents, the torsional angle was
manually rotated by 180° and the two rotamers were rigidly
docked into the enzyme active site using the Dock module. The
inhibitor-enzyme complexes were energy-minimized, using a
dielectric constant of 4.0 and a 10 Å nonbonded cutoff, until
the gradient value was smaller than 0.05 kcal/mol Å. The
inhibitor structure in the most stable docking model was
extracted from the complex for subsequent energy minimiza-
tion. Each compound geometry was then optimized with the
semiempirical MOPAC package version 6.026 using the Hamil-
tonian AM1 (keywords: PRECISE, NOMM, PARASOK), and
Coulson partial atomic charges were calculated using the same
method.

Alignment of the Compounds. One of the most important
adjustable parameters in CoMFA is the relative alignment of
all the compounds to one another so that they have a
comparable conformation and a similar orientation in space.
The SC-558 conformation extracted from the X-ray crystal-
lographic inhibitor-enzyme complex was used as template for
superimposition, assuming that this conformation represents
the most probable bioactive conformation of the diarylhetero-
cycle derivatives at the enzyme active site level. Nine features
were selected for the alignment of all compounds. These atoms
are numbered 1 to 9 in Figure 4. An example of this alignment
is presented in Figure 5. The fitting process was performed
using an “in-house” developed method written in SPL (SYBYL
Programming Language). This SPL program makes it possible
to fit all conformations of a compound on a template conforma-
tion (SC-558) according to selected pairs of atoms.

CoMFA Studies. The CoMFA8 studies were performed with
the QSAR module of SYBYL for each combination of the three
molecular fieldss(Ste) steric, (Ele) electrostatic, and (Lip)
lipophilicswhich were sampled at each point of a regularly
spaced grid of 1.5 Å within an automatically defined region.
The steric and electrostatic fields were calculated using a sp3-
carbon with a +1 charge as probe. The lipophilic field was
calculated by the molecular lipophilic potential (MLP) imple-
mented in the CLIP9 module of SYBYL. The method of partial
least squares (PLS) implemented in the QSAR module of
SYBYL was used to construct and validate the models. Cross-
validation was performed with the leave-one-out procedure.
The optimal number of components N retained for final PLS
analyses was defined as the one that yielded the highest cross-
validated q2 value and which normally had the smallest
standard error of prediction scv. The robustness of the models
was internally evaluated by calculating the r2, s, and F test
values from the training set and was externally validated by
calculating the r2

pred from the test set. To obtain the statistical
confidence limits on the analyses, bootstrapping was carried
out with 100 groups.

Presentation of the Results. From fully validated CoMFA
models, contour maps are presented displaying the most
relevant regions of the space where variations in the statistical
steric, electrostatic, and lipophilic fields are the largest. The
color code used to characterize these isocontours for each field
signal is described in Table 1.

Results and Discussion
A multimodel approach was used to obtain the best

predictive CoMFA model.
Training and Test Sets. Great attention was paid

to the distribution of biological activities and structural
classification of compounds in both the training and test
sets. All models show homogeneity in the distribution
of biological activities and structural characteristics of
their compounds split between training and test sets
randomly as presented for model 3 in Figure 6.

CoMFA Models. Knowledge of the SC-558 bioactive
conformation obtained from the X-ray crystallographic
inhibitor-enzyme complex was of great help in deter-

Figure 4. Superposition modes.

Figure 5. Alignment of the compounds.

Table 1. Color Code of Graphic CoMFA Results

molecular fields increased activity decreased activity

steric (Ste) green yellow
electrostatic (Ele)

positive charge blue red
negative charge red blue

lipophilic (Lip)
lipophilicity magenta white
hydrophilicity white magenta

Figure 6. Distributions of structural families (a) and biologi-
cal activities (pIC50) (b) versus number of molecules for the
training (black) and test (gray) sets of model 3.
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mining an experimentally derived alignment rule for the
five constituted training sets and their corresponding
test sets. The five different training sets were then used
to derive five separate CoMFA models taking into
account the combination of the three molecular fields
(i.e., steric, electrostatic, and lipophilic). The results
obtained are presented in Table 2. Although cross-
validation reflects the predictive power of the models,
the results indicate the good predictive capacity of the
models which yield high cross-validated correlation
coefficients q2 (from 0.707 to 0.741) with reasonable
respective standard errors of prediction scv (from 0.490
to 0.522). A q2 value of 0.3 corresponds to a confidence
limit greater than 95%, which minimizes the risk of
finding correlation just by mere chance.27 The optimal
number of components in each case was 8. This value
is reasonable considering the high number of compounds
used to derive the models. The leave-one-out procedure
might produce high q2 values which do not necessarily
give a suitable representation of the real predictive
power of the models.28 We therefore performed leave-
half-out cross-validation using half of the training set
compounds to predict the activity of the remaining half.
As the random constitution of the two groups may have
an effect on the results, cross-validation was repeated
100 times. The results show that the q2 mean values
obtained for the five models with low corresponding
standard deviations are slightly lower than those ob-
tained with the leave-one-out method. We never ob-
served any negative q2 mean values and can confirm
the great internal consistency of our training sets. We
checked this again by scrambling the biological data and
repeating the model derivation process.27 Chance cor-
relation can be detected in this way. The biological
activities were randomly assigned to molecular struc-
tures before leave-one-out cross-validation was per-
formed 50 times. In all cases, negative q2 values were
noted, and no model was obtained with more than three
components. We can therefore conclude that our models
are significantly better than random models.

Using eight principal components, our five models
yielded high conventional r2 (from 0.899 to 0.907) with
relatively low standard errors of estimate s (from 0.289
to 0.301) as shown in Table 2. These data suggest a good
correlation between the three molecular fields and the
activities registered for the different compounds of the
different models. The high bootstrapped correlation
coefficients r2

bs (from 0.933 to 0.937) and the small
standard deviations sbs (from 0.007 to 0.008) reflect a
high degree of confidence in the analyses performed.

Finally, to validate our models, we attempted to
predict activities for the 76 compounds of the test sets.
The calculated predictive correlation coefficients r2

pred
are given in Table 2. Multiple models were constructed
using overlapping test sets. Each compound may appear
several times in the test sets. We looked at the molec-
ular redundancy impact on prediction variations by
calculating the standard error of prediction spred for each
compound compiled over the number of times it ap-
peared. A total of 115 compounds were selected once,
72 compounds were selected twice (spred ) 0.121 (
0.111), 27 compounds were selected three times (spred
) 0.164 ( 0.090), 10 compounds were selected four
times (spred ) 0.237 ( 0.099), and none was selected five
times. We first noticed that there was molecular redun-
dancy among the five test sets but it was not exclusive
since 115 compounds were selected only once. Moreover,
for compounds that were selected more than once, spred
values were low showing that, for different combinations
in the training set, the predictions were similar. This
is further proof of the robustness of the various models.

Among the five models, model 3 yielding a good r2
pred

(0.740) concording with the q2 value (0.714), appears to
be the best predictive one. The determination coefficient
of this linear regression has a value of 0.750. The
estimated pIC50 values versus the experimental values
for both the training and test sets are graphically
represented in Figure 7. A total of 68% of compounds
were predicted with an error lower than 0.5, and 96%
of compounds with an error lower than 1. This model
did not predict the pIC50 values accurately for only three
compounds, 168, 206, and 303, which were overesti-
mated with error values, respectively, of 1.03, 1.05, and
1.18 log units. With regard to the size of our test set
(76 compounds), these outliers do not call the statistical
validity of our model into question. The discrepancy
observed for compound 168 may be explained by the bad
orientation of its phenyl ring substituents since when
the torsional angle was rotated by 180°, the activity of
the corresponding rotamer was correctly predicted with
an error value of 0.69. Regarding compound 206, our
model cannot completely explain the sharp decrease in
activity observed when replacing the two fluorine atoms
in the central ring with chlorine atoms.19 The activity
of the difluorinated analogue of compound 206, com-
pound 177, was correctly predicted in the corresponding
training set, with an error value of 0.23. Compound 303
was identified as an active metabolite of valdecoxib,

Table 2. Statistical Results for the Five CoMFA Models

model 1 model 2 model 3 model 4 model 5

q2 a 0.741 0.722 0.714 0.708 0.707
Nb 8 8 8 8 8
scv

c 0.490 0.487 0.504 0.503 0.522
r2 d 0.907 0.899 0.905 0.904 0.902
se 0.294 0.292 0.291 0.289 0.301
F f 267.284 246.028 261.545 257.996 254.529
r2

bs
g 0.937 0.934 0.933 0.935 0.933

sbs
h 0.008 0.008 0.008 0.007 0.008

r2
pred

i 0.654 0.708 0.740 0.710 0.664
a Cross-validation correlation coefficient. b Number of compo-

nents. c Standard error of prediction. d Correlation coefficient.
e Standard error of estimate. f F-ratio. g Bootstrapped correlation
coefficient. h Bootstrapped standard deviation. i Predicted correla-
tion coefficient.

Figure 7. Predicted values versus experimental values for
the training (a) and test (b) sets of model 3.
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which is at present being clinically evaluated to control
pain and inflammation.22 Its surprising biological profile
might explain why it is difficult to predict its pIC50 value
accurately. The activity of valdecoxib, included in the
training set, was very well predicted with an error value
of 0.16. In the same way, celecoxib, which has recently
been marketed, also displayed an excellent predicted
activity with an error value of 0.19.

Model 3 was then selected for further investigations.
We paid particular attention to the combination of the
three molecular fields to determine their degree of
interdependence. CoMFA models were calculated for
each molecular field considered alone or in combination
(Table 3). All the q2 values were always higher than 0.5.
These data suggest a good level of interdependency
among the three molecular fields. The best CoMFA
model was obtained with the combination of the three
molecular fields: steric, electrostatic, and lipophilic.

Then, to determine the influence of structural diver-
sity on the CoMFA model, we divided the training set
of model 3 into six subsets according to structural
characteristics. These subsets were pyrrole (subset A:
13 compounds), imidazole (subset B: 91 compounds),
cyclopentene (subset C: 27 compounds), benzene (subset
D: 26 compounds), pyrazole (subset E: 44 compounds),
and spiroheptene (subset F: 24 compounds) derivatives.
CoMFA models were derived for each subset (Table 4).
No model with q2 > 0.3 was found for the pyrrole (subset
A) and pyrazole derivatives (subset E). For subset A,
the number of compounds (13) was certainly too small
to obtain a meaningful CoMFA model and, for subset
E, structural variability seemed too poor to obtain a
suitable model. On the other hand, statistically signifi-
cant models were obtained for imidazole (subset B),
benzene (subset D), and spiroheptene (subset F) deriva-

tives. The cyclopentene derivatives (subset C) provide
a statistically poor model since the latter needs 10
principal components for only 27 compounds. This leads
to a very high unrealistic correlation coefficient r2

(0.998).
Graphic representations of the CoMFA model 3 are

displayed in Figure 8. They show regions where varia-
tions of steric, electrostatic, or lipophilic nature in the
structural features of the different compounds of the
training set lead to increases or decreases in activity.
They do not take the common structural features of the
molecules into account insofar as the CoMFA method
relates the differences in biological properties to differ-
ences in the shapes of the noncovalent fields (electro-
static, steric, and lipophilic) surrounding the tested
molecules. The CoMFA contour plot shows green-colored
regions (>85% contribution) where increased steric bulk
is associated with enhanced activity and yellow-colored
regions (<15% contribution) where increased steric bulk
is associated with diminished activity. The favorable
steric region is close to the tensor between the two
aromatic rings and the nonsulfonamide-containing phen-
yl ring. The unfavorable steric region may be mainly
related to the critical size of the substituent at position-4
of this phenyl ring as discussed in a previous standard
SAR study.20 Regions where increased positive charge
is favorable for activity (>85% contribution) are indi-
cated in blue, while those where increased negative
charge is favorable for activity (<15% contribution) are
in red. Two blue zones can be observed close to the
bottom of the heterocycle and the substituent at 4-posi-
tion of the nonsulfonamide-containing phenyl ring.
Another blue zone in the vicinity of the 2-position
indicates that electron-withdrawing substituents in that
area will decrease COX-2 inhibitory activity. For ex-
ample, compounds 295 and 296 were less active than
respective compounds 273 and 275 due to the presence
of a chlorine or fluorine atom in 2-position. Regions
colored in magenta (>85% contribution) correspond to
a favorable influence of lipophilicity, and regions colored
in white (<15% contribution) correspond to a favorable
influence of hydrophilicity. The position of a magenta
zone near the substituent at 4-position emphasizes the
importance of its lipophilic nature. The presence of a
white zone close to the sulfonamide group confirms this
importance in COX-2 side-pocket binding. The structure
of COX-2 inhibitors belonging to the 1,2-diarylhetero-
cycle class exploits binding within the COX-2 side-
pocket (often via sulfonyl, sulfone, or sulfonamide
groups) to achieve selectivity.29 These moieties are not
structural requisites in the new class of 1,3-diaryl-
tetrahydro-2H-indoles.30 As CoMFA models were ob-
tained from structural information provided only by the
enzyme inhibitors, it seems interesting to describe the
contour maps in relation to the enzyme site structure
(Figure 9). Such an approach may provide valuable
insight into binding requirements.28,31-34 However, in-
terpretation of results must be carried out carefully
since contour maps cannot really be compared to recep-
tor maps.8 Sterically favorable green contours are
located along the enzyme channel which is largely
hydrophobic and contribute to enhancing activity by
interacting with Val349, Leu352, Tyr355, Trp387,
Phe518, Ala527, and Leu531, while the sterically un-

Table 3. Statistical Results for the Seven Possible
Combinations of the Three Molecular Fields: Steric,
Electrostatic, and Lipophilic Fields Considered in CoMFA
Models

Steg Eleg Lipg Ste/Eleg Ste/Lipg Ele/Lipg Ste/Ele/Lipg

q2 a 0.553 0.554 0.572 0.601 0.622 0.652 0.714
Nb 5 5 9 6 10 8 8
scv

c 0.626 0.625 0.618 0.593 0.582 0.556 0.504
r2 d 0.729 0.703 0.825 0.802 0.893 0.871 0.905
se 0.488 0.511 0.395 0.418 0.509 0.338 0.291
F f 119.697 105.351 115.001 149.401 182.396 186.198 261.545

a Cross-validation correlation coefficient. b Number of compo-
nents. c Standard error of prediction. d Correlation coefficient.
e Standard error of estimate. f F-ratio. g Molecular field(s) used in
CoMFA (Ste: steric field, Ele: electrostatic field, Lip: lipophilic
field).

Table 4. Statistical Results for the Six Constituted Subsets

Ah Bh Ch Dh Eh Fh

n a 13 91 27 26 44 24
q2 b -0.043 0.703 0.658 0.368 0.156 0.451
Nc 3 6 18 4 1 5
scv

d 0.884 0.412 0.882 0.551 0.682 0.534
r2 e 0.941 1.000 0.892 0.961
s f 0.183 0.022 0.228 0.141
Fg 224.853 2027.002 43.282 89.897

a Number of compounds. b Cross-validation correlation coef-
ficient. c Number of components. d Standard error of prediction.
e Correlation coefficient. f Standard error of estimate. g F-ratio.
h Subset constituted according to their structural belonging from
the training set of model 3 (A: pyrrole, B: imidazole, C: cyclopen-
tene, D: benzene, E: pyrazole, F: spiroheptene).
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favorable yellow region overlaps with atoms of Met522.
The negative charge favorable red contour observed at
the lower part of the heterocycle may be related to the
ability of the compounds to bind to the positive-charged
Arg120 in the COX-2 nonselective binding-site.29 A
positive charge favorable blue contour was also observed
in the vicinity of the Met522 sulfide atom. The position
of magenta contours suggests that this favorable hy-

Figure 8. Contour plots of steric (a), electrostatic (b), and
lipophilic (c) fields from the model 3 CoMFA in combination
with celecoxib. (a) Steric contour plots: green contours (>85%
contribution) indicate regions where an increase in steric bulk
will enhance activity, and yellow contours (<15% contribution)
indicate regions where an increase in steric bulk will reduce
activity. (b) Electrostatic contour plots: blue contours (>85%
contribution) and red contours (<15% contribution) correspond
to regions where an increase in positive or negative charge,
respectively, will enhance activity. (c) Lipophilic contour plots:
magenta contours (>85% contribution) and white contours
(<15% contribution) show regions where an increase in lipo-
philicity or hydrophilicity, respectively, will enhance activity.

Figure 9. Superimposition of the steric (a), electrostatic (b),
and lipophilic (c) model 3 CoMFA contour plots and some active
site residues of COX-2.
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drophobic influence may be related to the favorable
influence of bulky nonpolar substituents in the vicinity
of Val349, Trp387, Phe518, and Leu531. The hydro-
philicfavorable white contour that occupies the COX-2
side-pocket may be explained by the possibility of
sulfone or sulfonamide groups of the inhibitor to interact
with the hydrophilic residues His90 and Arg513. An-
other white contour was also observed near Gln350.
These observations indicate that our 3D-QSAR model
concords with enzyme site topology and is able to take
into account the interactions shown by X-ray data.

Conclusion

In this paper, a large series (305 compounds) of
structurally different selective COX-2 inhibitors belong-
ing to the diarylheterocycle class was used to generate
and validate multiple 3D-QSAR models using CoMFA
methodology and considering steric, electrostatic, and
lipophilic parameters. These models were built using
the X-ray crystal structure based alignment rule. The
highly consistent and predictive selected CoMFA model
was confronted with the three-dimensional structure of
the enzyme. The CoMFA contour maps show total
compatibility with protein topology. This confirms the
great accuracy of the model that can predict inhibitory
activities for a wide range of compounds of the COX-2
enzyme and offers important structural insight into
designing novel selective COX-2 inhibitors prior to their
synthesis.
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material is available free of charge via the Internet at http://
pubs.acs.org.

References
(1) Reitz, D. B.; Isakson, P. C. Cyclooxygenase-2 Inhibitors. Curr.

Pharm. Des. 1995, 1, 211-220.
(2) Fu, J. Y.; Masferrer, J. L.; Seibert, K.; Raz, A.; Needleman, P.

The Induction and Suppression of Prostaglandin H2 Synthase
(Cyclooxygenase) in Human Monocytes. J. Biol. Chem. 1990,
265, 16737-16740.

(3) Subbaramaiah, K.; Zakim, D.; Weksler, B. B.; Dannenberg A.
J. Inhibition of Cyclooxygenase: A Novel Approach to Cancer
Prevention. Proc. Soc. Exp. Biol. Med. 1997, 216, 201-210.

(4) Pasinetti, G. M. Cyclooxygenase and Inflammation in Alzhe-
imer’s Disease: Experimental Approaches and Clinical Inter-
vention. J. Neurosci. Res. 1998, 54, 1-6.

(5) Futaki, N.; Yoshikawa, K.; Hamasaka, Y.; Arai, I.; Higuchi, S.;
Iizuka, H.; Otomo, S. NS398, a Novel Nonsteroidal Antiinflam-
matory Drug with Potent Analgesic and Antipyretic Effects,
which Causes Minimal Stomach Lesions. Gen. Pharmacol. 1993,
24, 105-110.

(6) Gans, K.; Galbraith, W.; Roman, R.; Haber, S.; Kerr, J.; Schmidt,
W.; Smith, C.; Hewes, W.; Ackerman, N. Antiinflammatory and
Safety Profile of DuP697, a Novel Orally Prostaglandin Synthe-
sis Inhibitor. J. Pharm. Exp. Ther. 1990, 254, 180-187.

(7) Kalgutkar, A. S.; Marnett, A. B.; Crews, B. C.; Remmel, R. P.;
Marnett, L. J. Ester and Amide Derivatives of the Nonsteroidal
Antiinflammatory Drug, Indomethacin, as Selective Cyclooxy-
genase-2 Inhibitors. J. Med. Chem. 2000, 43, 2860-2870.

(8) Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. Comparative
Molecular Fields Analysis (CoMFA). 1. Effect of Shape on
Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc. 1988,
110, 5959-5967.

(9) (a) Gaillard, P.; Carrupt, P. A.; Testa, B.; Boudon, A. Molecular
Lipophilicity Potential, a Tool in 3D-QSAR. Methods and Ap-
plications. J. Comput.-Aided Mol. Des. 1994, 8, 83-96. (b) CLIP
1.0, Institute of Medicinal Chemistry, University of Lausanne,
BEP-Dorigny, CH-1015 Lausanne, Switzerland.

(10) Carrupt, P. A.; Gaillard, P.; Billois, F.; Weber, P.; Testa, B.;
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